metabelian, supersoluble, monomial
Aliases: C33⋊8D4, C32⋊5D12, C6.14S32, Dic3⋊(C3⋊S3), (C3×C6).33D6, (C3×Dic3)⋊1S3, C3⋊2(C12⋊S3), C3⋊1(C3⋊D12), C32⋊10(C3⋊D4), (C32×Dic3)⋊1C2, (C32×C6).11C22, (C6×C3⋊S3)⋊3C2, (C2×C3⋊S3)⋊5S3, C6.6(C2×C3⋊S3), C2.6(S3×C3⋊S3), (C2×C33⋊C2)⋊2C2, SmallGroup(216,129)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C33⋊8D4
G = < a,b,c,d,e | a3=b3=c3=d4=e2=1, ab=ba, ac=ca, ad=da, eae=a-1, bc=cb, bd=db, ebe=b-1, dcd-1=ece=c-1, ede=d-1 >
Subgroups: 852 in 136 conjugacy classes, 34 normal (14 characteristic)
C1, C2, C2, C3, C3, C3, C4, C22, S3, C6, C6, C6, D4, C32, C32, C32, Dic3, C12, D6, C2×C6, C3×S3, C3⋊S3, C3×C6, C3×C6, C3×C6, D12, C3⋊D4, C33, C3×Dic3, C3×C12, S3×C6, C2×C3⋊S3, C2×C3⋊S3, C3×C3⋊S3, C33⋊C2, C32×C6, C3⋊D12, C12⋊S3, C32×Dic3, C6×C3⋊S3, C2×C33⋊C2, C33⋊8D4
Quotients: C1, C2, C22, S3, D4, D6, C3⋊S3, D12, C3⋊D4, S32, C2×C3⋊S3, C3⋊D12, C12⋊S3, S3×C3⋊S3, C33⋊8D4
(1 21 8)(2 22 5)(3 23 6)(4 24 7)(9 18 32)(10 19 29)(11 20 30)(12 17 31)(13 36 26)(14 33 27)(15 34 28)(16 35 25)
(1 16 11)(2 13 12)(3 14 9)(4 15 10)(5 26 31)(6 27 32)(7 28 29)(8 25 30)(17 22 36)(18 23 33)(19 24 34)(20 21 35)
(1 8 21)(2 22 5)(3 6 23)(4 24 7)(9 32 18)(10 19 29)(11 30 20)(12 17 31)(13 36 26)(14 27 33)(15 34 28)(16 25 35)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)
(2 4)(5 24)(6 23)(7 22)(8 21)(9 14)(10 13)(11 16)(12 15)(17 28)(18 27)(19 26)(20 25)(29 36)(30 35)(31 34)(32 33)
G:=sub<Sym(36)| (1,21,8)(2,22,5)(3,23,6)(4,24,7)(9,18,32)(10,19,29)(11,20,30)(12,17,31)(13,36,26)(14,33,27)(15,34,28)(16,35,25), (1,16,11)(2,13,12)(3,14,9)(4,15,10)(5,26,31)(6,27,32)(7,28,29)(8,25,30)(17,22,36)(18,23,33)(19,24,34)(20,21,35), (1,8,21)(2,22,5)(3,6,23)(4,24,7)(9,32,18)(10,19,29)(11,30,20)(12,17,31)(13,36,26)(14,27,33)(15,34,28)(16,25,35), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36), (2,4)(5,24)(6,23)(7,22)(8,21)(9,14)(10,13)(11,16)(12,15)(17,28)(18,27)(19,26)(20,25)(29,36)(30,35)(31,34)(32,33)>;
G:=Group( (1,21,8)(2,22,5)(3,23,6)(4,24,7)(9,18,32)(10,19,29)(11,20,30)(12,17,31)(13,36,26)(14,33,27)(15,34,28)(16,35,25), (1,16,11)(2,13,12)(3,14,9)(4,15,10)(5,26,31)(6,27,32)(7,28,29)(8,25,30)(17,22,36)(18,23,33)(19,24,34)(20,21,35), (1,8,21)(2,22,5)(3,6,23)(4,24,7)(9,32,18)(10,19,29)(11,30,20)(12,17,31)(13,36,26)(14,27,33)(15,34,28)(16,25,35), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36), (2,4)(5,24)(6,23)(7,22)(8,21)(9,14)(10,13)(11,16)(12,15)(17,28)(18,27)(19,26)(20,25)(29,36)(30,35)(31,34)(32,33) );
G=PermutationGroup([[(1,21,8),(2,22,5),(3,23,6),(4,24,7),(9,18,32),(10,19,29),(11,20,30),(12,17,31),(13,36,26),(14,33,27),(15,34,28),(16,35,25)], [(1,16,11),(2,13,12),(3,14,9),(4,15,10),(5,26,31),(6,27,32),(7,28,29),(8,25,30),(17,22,36),(18,23,33),(19,24,34),(20,21,35)], [(1,8,21),(2,22,5),(3,6,23),(4,24,7),(9,32,18),(10,19,29),(11,30,20),(12,17,31),(13,36,26),(14,27,33),(15,34,28),(16,25,35)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36)], [(2,4),(5,24),(6,23),(7,22),(8,21),(9,14),(10,13),(11,16),(12,15),(17,28),(18,27),(19,26),(20,25),(29,36),(30,35),(31,34),(32,33)]])
C33⋊8D4 is a maximal subgroup of
S3×C3⋊D12 C3⋊S3⋊4D12 D6.3S32 Dic3.S32 C12.39S32 C12.40S32 C12.73S32 S3×C12⋊S3 C62.93D6 C3⋊S3×C3⋊D4 C62⋊23D6
C33⋊8D4 is a maximal quotient of
C33⋊8D8 C33⋊16SD16 C33⋊17SD16 C33⋊8Q16 C62.78D6 C62.79D6 C62.80D6
33 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | ··· | 3E | 3F | 3G | 3H | 3I | 4 | 6A | ··· | 6E | 6F | 6G | 6H | 6I | 6J | 6K | 12A | ··· | 12H |
order | 1 | 2 | 2 | 2 | 3 | ··· | 3 | 3 | 3 | 3 | 3 | 4 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 12 | ··· | 12 |
size | 1 | 1 | 18 | 54 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 6 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 18 | 18 | 6 | ··· | 6 |
33 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | S3 | S3 | D4 | D6 | D12 | C3⋊D4 | S32 | C3⋊D12 |
kernel | C33⋊8D4 | C32×Dic3 | C6×C3⋊S3 | C2×C33⋊C2 | C3×Dic3 | C2×C3⋊S3 | C33 | C3×C6 | C32 | C32 | C6 | C3 |
# reps | 1 | 1 | 1 | 1 | 4 | 1 | 1 | 5 | 8 | 2 | 4 | 4 |
Matrix representation of C33⋊8D4 ►in GL8(ℤ)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | -1 |
0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(8,Integers())| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,-1],[0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0] >;
C33⋊8D4 in GAP, Magma, Sage, TeX
C_3^3\rtimes_8D_4
% in TeX
G:=Group("C3^3:8D4");
// GroupNames label
G:=SmallGroup(216,129);
// by ID
G=gap.SmallGroup(216,129);
# by ID
G:=PCGroup([6,-2,-2,-2,-3,-3,-3,24,73,201,730,5189]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^4=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e=a^-1,b*c=c*b,b*d=d*b,e*b*e=b^-1,d*c*d^-1=e*c*e=c^-1,e*d*e=d^-1>;
// generators/relations